Stage III Non Small Cell Lung Cancer Concurrent Treatments and Toxicities

> Dr. Khalid Hirmiz MD,FRCPC Radiation Oncologist Cancer Education Day Friday, April 13,2018

No Disclosures

Objectives

- Review the rationale for the treatment of stage III NSCLC (Concurrent Chemo Radiation).
- Review evidence and outcome of the concurrent treatment.
- Review the toxicity of concurrent treatment.
- Review the role of surgery in stage III NSCLC.
- Review the evidence of delivering higher Radiation dose in stage III NSCLC.

Patient description MR. J.H.

65-year-old man

Referred for hemoptysis, chronic cough, and progressive dyspnea.

History

Past medical history: COPD, benign prostatic hypertrophy, depression, Hepatitis C treated and cured.

Past surgical history: Appendectomy and bronchoscopy.

No drug allergies. Current medications: Ventolin, Pantolac, Tylenol #3, Flomax, Meds Quetiapine, Ultibro, Cromolyn.

Social

Sister who is supportive. Cocaine abuse by snorting, marijuana use 1-2 joints per week, chronic smoker, few alcoholic drinks per week.

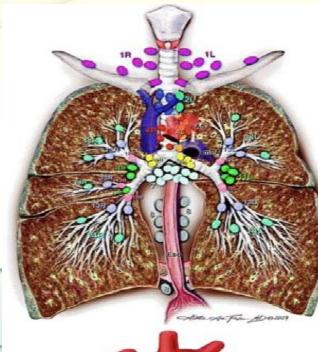
Nothing notable

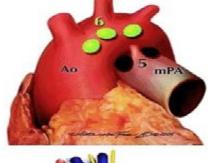
FHx

Physical examination unremarkable

Patient Description Mr. J.H.

- CXR: Opacity in the Left lung, concerning for cancer.
- Ct chest: 6.7 cm speculated mass in the left upper lobe abutting the pleural surface with concern for extension into the mediastinal fat.
 There were enlarged left hilar, AP window and subaortic lymph nodes.
- CT head: Negative for mets.
- Patient is referred to Lung DAP.

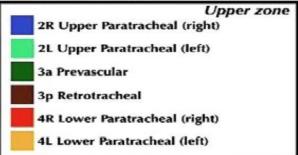

Patient Description Mr. J.H


- Bronchoscopy from left upper lobe and 11 L confirmed adenocarcinoma, EGFR negative, ALK negative and PDL1 > 50%.
- Spirometry revealed normal lung function with FEV1 of 85% and diffusion capacity of 90%.
- PET scan: metabolically active left upper lobe mass 6.1 by 5.5 cm, with SUV of 12.5 within malignant range. Hypermetabolic left hilar, stations 5 and 6 mediastinal nodes consistent with malignant involvement. No evidence of distant metastasis.

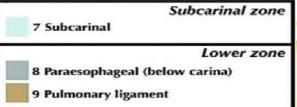
TNM Staging

T/M	Label	NO	N1	N2	N3
T1	Tla≤/	IA1	IIB	IIIA	IIIB
	T1b >1-2	IA2	IIB	IIIA	IIIB
	T1c >2-3	IA3	IIB	IIIA	IIIB
T2	T2a Cent, Yisc Pl	IB	IIB	IIIA	IIIB
	T2a >3-4	IB	IIB	IIIA	IIIB
	T2b >4-5	IIA	IIB	IIIA	IIIB
T3	T3 >5-7	IIB	IIIA	IIIB	IIIC
	T3 Inv	IIB	IIIA	IIIB	IIIC
	T3 Satell	IIB	IIIA	IIIB	IIIC
T4	T4 >7	IIIA	IIIA	IIIB	IIIC
	T4 Inv	IIIA	IIIA	IIIB	IIIC
	T4 Ipsi Nod	IIIA	IIIA	IIIB	IIIC
M1	Mla Contr Nod	IVA	IVA	IVA	IVA
	M1a PI Dissem	IVA	IVA	IVA	IVA
	M1b Single	IVA	IVA	IVA	IVA
	M1c Multi	IVB	IVB	IVB	IVB

Mediastinal Nodes



Supraclavicular zone 1 Low cervical, supraclavicular, and sternal notch nodes


SUPERIOR MEDIASTINAL NODES

AORTIC NODES

AP zone 5 Subaortic 6 Para-aortic (ascending aorta or phrenic)

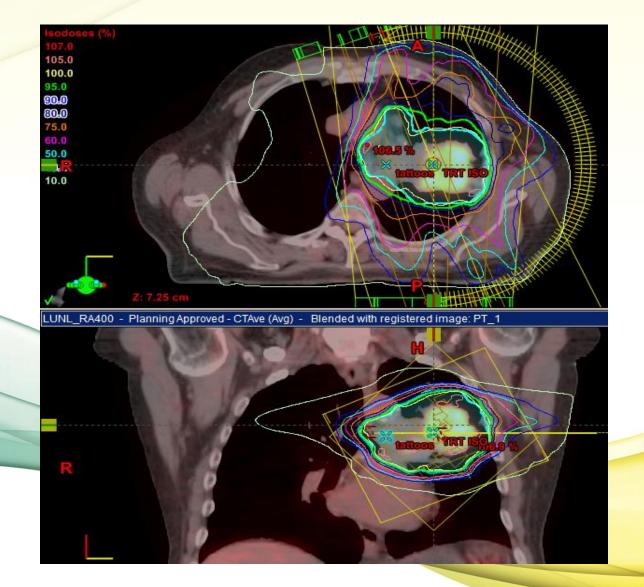
INFERIOR MEDIASTINAL NODES

N1 NODES

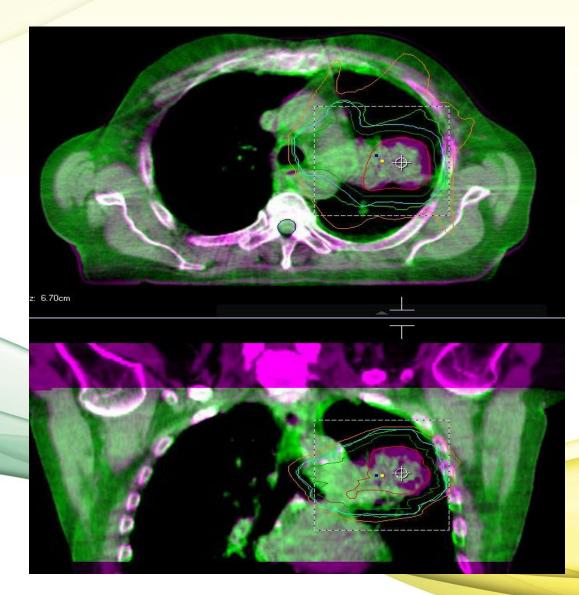
Management

- History and Physical (Comorbidities, weight loss, ECOG PS, smoking, etc.)
- CXR, CT chest, PET scan
- Brain imaging (CT or MRI)
- PFT
- Other imaging: bone scan, CT Abd/Pelvis, etc.
- Biopsy: CT guided or bronchoscopy (EBUS).

Radiation Therapy Process


- CT simulation
- 4D CT simulation
- Patient immobilization
- Treatment planning:
 -PET fusion
 - -Target volume and organs at risk delineation,
 - -Dose calculation, distribution, fields designing
- Treatment delivery
- Treatment verification (IGRT-CBCT)

Concurrent Chemo Radiation


- Radiation 60Gy/30 fractions/6 weeks
- Cisplatin+ etoposide week 1 and 5 of Radiation
 Management of side effects during treatment

-CBC monitoring during treatment.

Radiation Treatment Delivery

Cone Beam CT During Treatment

Radiation Toxicity

- Fatigue
- Radiation dermatitis
- Cough
- Esophagitis
- Radiation pneumonitis
- Heart injury
- Brachial plexopathy (apical tumors)
- Spinal cord injury

Chemotherapy Toxicity

- Hair loss
- Mouth sores
- Nausea and vomiting
- Anemia
- Neutropenia
- Thrombocytopenia
- Fatigue
- Renal toxicity
- Ototoxicity

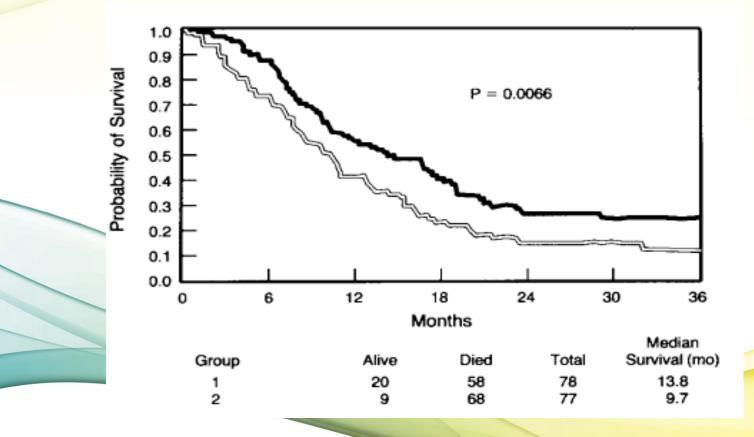
Treatment Challenges in Stage III NSCLC

- Tumor heterogeneity within NSCLC.
- Requirement to simultaneously control the disease locoregionally and systemically.
- Treatment related toxicity.
- Patient related factors (weight loss, PS, age, comorbidities).

Rationale for Concurrent ChemoRadiation

Tumor response enhancement:

-Chemo can modify/add DNA damage caused by Radiation and enhance the effect.


Spatial cooperation:

-Radiation effect predominantly at primary and regional sites.

-Chemo effect on distant sites (micromets)

Induction (Sequential) Chemo Followed by Radiation vs. Radiation

Dillman et al NEJM Oct 1990

Concurrent Chemo Radiation is Superior to Sequential Chemo>Radiation

Table 1 Phase III Trials As	sessing Chen	nothera	py and Radiation Ther	apy in the Tre	eatment of LA-NSCLC				
Trials	Accrual Period	n	Arms	RT Dose (Gy/F)	Response	MST (mo)	Long-Term Survival	Toxicities Pneumonitis (G3+)	Esophagitis (G3+) (%)
WJLCG Furuse et al ⁸	1992-1994	314	$\begin{array}{c} \text{MVP-RT} \\ \text{MVP} \times 2 \rightarrow \text{RT} \end{array}$	56/28	CR 2.6% and PR 81.4% CR 1.3% and PR 65.1%	16.5 [*] 13.3	15.8% (5 y) 8.9% (5 y)	2% 2%	4 3
RTOG 9410 Curran et al ⁹	1994-1998	407	$\begin{array}{l} \text{PVbI-RT} \\ \text{PVbI} \times 2 \ \rightarrow \ \text{RT} \end{array}$	63/34	CR 42% and PR 28% CR 30% and PR 32%	17.0 [*] 14.6	16% (5 y) 10% (5 y)	4% 9%	23 4
GLOT-GFPC NPC 95-10	1996-2000	205	$\text{EP-RT} \rightarrow \text{PVr} \times 3$	66/33	CR 9% and PR 40%	16.3	20.7% (4 y)	5%	32
Fournel et al ¹⁰			$PVr \times 3 \rightarrow RT$		CR 4% and PR 50%	14.5	18.6% (4 y)	11%	3
FNCLCC and IFCT Gervais et al ¹¹	1996-2003	427	$\begin{array}{l} PVr \times 2 \rightarrow Cb\text{-}RT \\ PVr \times 2 \rightarrow Cb\text{-}RT \end{array}$	66/33	NR	14 11	NR	NR	3.4 4.1
Czech Republic study Zatloukal et al ¹²		102	$\begin{array}{l} PVr \times 1 \rightarrow PVr\text{-}RT \\ PVr \times 4 \rightarrow RT \end{array}$	60/30	CR 21% and PR 59% CR 17% and PR 30%	16.6 [*] 12.9	18.6% (3 y) 9.5% (3 y)	4% 2%	18 4
CTRT99/97 Huber et al ¹³	1997-2003	214 [†]	$\begin{array}{c} \text{TCb} \times \textbf{2} \rightarrow \text{TCb-RT} \\ \text{TCb} \times \textbf{2} \rightarrow \text{RT} \end{array}$	60	CR 12.1% and PR 34.3% CR 5.3% and PR 33.6%	18.7 14.1	NR	0 0	12.8 6.5
CALGB/ECOG Clamon et al ¹⁴	NR	283	$\begin{array}{l} \text{PVbl} \times \textbf{2} \rightarrow \text{Cb-RT} \\ \text{PVbl} \times \textbf{2} \rightarrow \text{RT} \end{array}$	60/30	CR 18% and PR 40% CR 10% and PR 48%	13.4 13.5	13% (4 y) 10% (4 y)	1 % 5%	12 4
EORTC 08972 Belderbos et al ¹⁵	1997-2003	158	$\begin{array}{c} \text{GP} \times \textbf{2} \rightarrow \text{P-RT}^{\ddagger} \\ \text{GP} \times \textbf{2} \rightarrow \text{RT} \end{array}$	66/24	CR 12.1% and PR 34.3% CR 5.3% and PR 33.6%	16.5 16.2	34% (3 y) 22% (3 y)	18% 14%	14 5

Abbreviations: Cb, carboplatin; CR, complete response; ECOG, Eastern Cooperative Oncology Group; EORTC, European Organization for Research and Treatment of Cancer; EP, cisplatin-etoposide; FNCLCC, French National Federation of Cancer Centers; GLOT-GFPC NPC 95-10, Groupe Lyon-Saint-Etienne d'Oncologie Thoracique-The French Pneumology Group NPC 95-10; GP, gemcitabinecisplatin; IFCT, French intergroup for thoracic oncology; NR, not reported; P, cisplatin; PR, partial response; PVbl, cisplatin-vinblastine; PVr, cisplatin-vinorelbine; TCb, paclitaxel-carboplatin; WJLCG, West Japan Lung Cancer Group.

*Significantly different (P < 0.05).

[†]Patients were randomly assigned.

[±]Low-dose cisplatin (6 mg/m²).

Meta-Analysis of Concomitant Versus Sequential ChemoRadiation

Auperin et al JCO May 2010

- 1205 pts, 6 trials.
- Median FU 6 years.
- The primary outcome was overall survival.
- Secondary outcomes were progression-free survival, cumulative incidences of locoregional and distant progression, and acute toxicity.

Meta-Analysis of Concomitant Versus Sequential ChemoRadiation

Auperin et al JCO May 2010

- Significant improvement in overall survival with concurrent ChemoRadiation compared to sequential treatment,5.7% (18.1% to23.8%) at 3 years, and 4.5% (10.6% to15.1%) at 5 years. HR=0.84,95%CI=0.740.95,P=0.004.
- For progression-free survival, the HR was 0.90 (95% CI, 0.79 to 1.01; P=0.07), in favor of concurrent treatment.
 - Concurrent treatment decreased locoregional progression by 6% (34.1% to28.1%) at 3 years and by 6.1% (35%to28.9%) at 5 years (HR, 0.77; 95% CI, 0.62 to 0.95; *P*=0.01).

Meta-Analysis of Concomitant Versus Sequential ChemoRadiation

Auperin et al JCO May 2010

- No significant effect on development of distant mets (HR, 1.04; 95% CI, 0.86 to 1.25; P=0.69).
- Concurrent treatment increased acute esophageal toxicity (grade 3-4) from 4% to 18% with a relative risk of 4.9 (95% Cl, 3.1 to 7.8; P=0.001).
- There was no significant difference in acute pulmonary toxicity.
- Concurrent radiochemotherapy, as compared with sequential radiochemotherapy, improved survival of patients with locally advanced NSCLC, primarily because of a better locoregional control, but at the cost of manageable increased acute esophageal toxicity.

Meta Analysis Concurrent vs Sequential ChemoRadiation

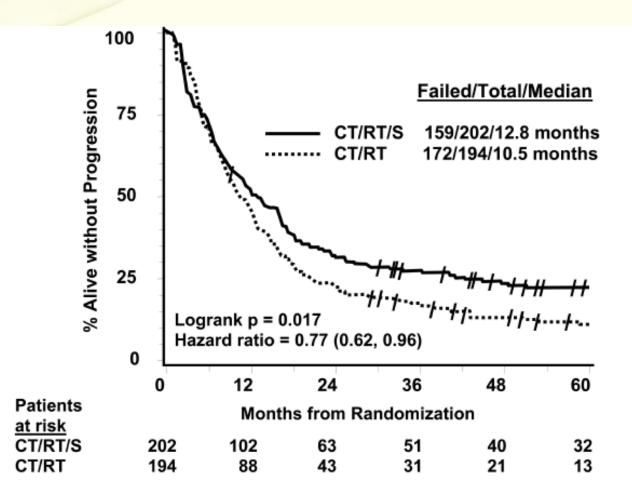
O'Rourke et al-Cochrane database sys review 2010

- 6 Trials, 1024 patients analyzed.
- Significant 10% Absolute OS benefit in favor of concurrent treatment at 2 years, HR=0.74,95%CI:0.62-0.89
- Relative risk of death 4% vs 2%, not significant (RR 2.02,95%CI:0.90-4.52)

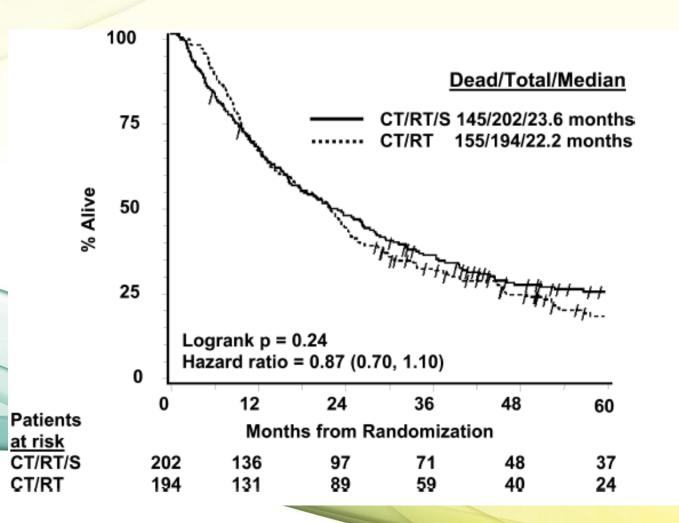
 Higher esophageal toxicity in concurrent treatment RR=4.96,95%CI=2.17-11.37. Intergroup 0139 Study Albain et al Lancet Aug 2009

- ?Role of surgery after chemoradiation
- Patients with stage T1-3pN2M0 NSCLC were randomized before induction chemoRT
- 396 patients

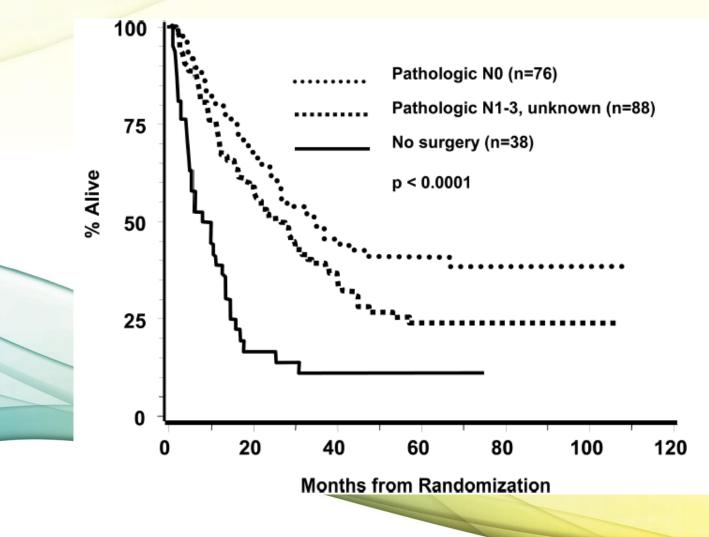
Intergroup 0139 Study

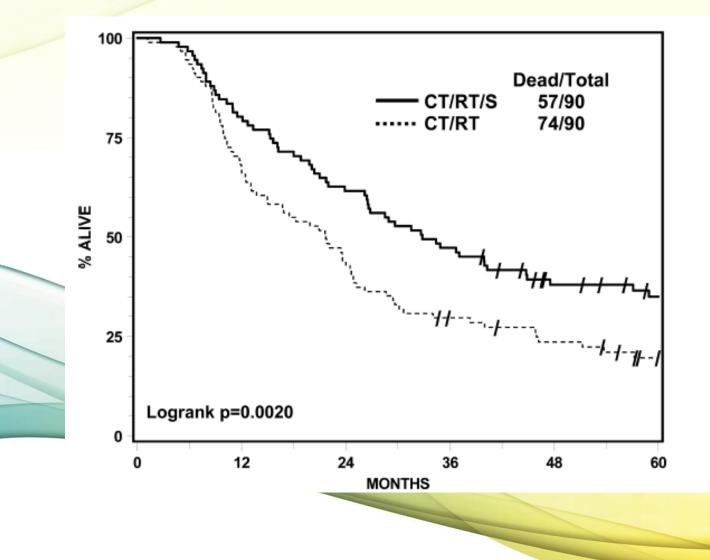

Albain et al Lancet Aug 2009

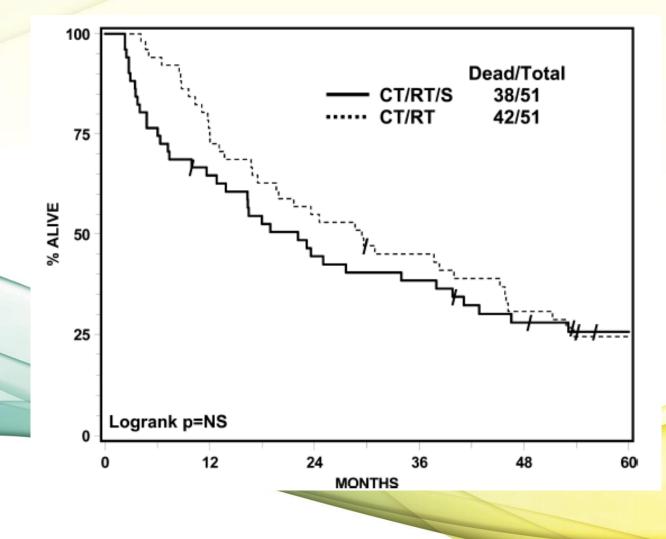
396 patients


- Arm 1: 2 cycles of cisplatin-etoposide and Radiation 45Gy/25 fractions, if no progression, followed by Thoracotomy, then 2 additional chemo cycles.
 - VS
- Arm 2: 2cycles of cisplatin-etoposide and Radiation 45Gy/25 fractions, if no progression, continue to 61Gy with additional chemo

The primary endpoint was overall survival (OS)


5year DFS


Overall Survival


OS in arm1 by Pathologic Subtype Following Thoracotomy

OS Lobectomy Subset in Arm 1 vs Matched Cohort in Arm 2 Albain et al Lancet Aug 2009

OS Pneumonectomy Subset in Arm 1 vs Matched Cohort in Arm 2

Worst Toxicity Anytime

Toxicity	Arn	<u>Arm 1 (n = 202)</u>			<u>Arm 2 (n = 194)</u>		
		Grade		Grade			
	3	4	5*	3	4	5*	
Leukopenia	82	15	0	76	31	0	
Neutropenia	54	23	0	47	33	0	
Anemia	25	1	0	42	5	0	
Thrombocytopenia	10	4	0	12	11	0	
Worst hematologic toxicity per patient	89	28	0	75	50	0	
Nausea and/or emesis	17	3	0	37	7	0	
Neuropathy	10	0	0	4	3	0	
Esophagitis	17	3	0	37	7	0	
Stomatitis and/or mucositis	6	0	0	4	1	0	
Pulmonary*	17	1	13	24	4	3	
Other gastrointestinal or renal	6	4	0	5	2	0	
Cardiac	4	3	3**	7	2	0	
Miscellaneous infection	5	1	0	8	0	0	
Hemorrhage		0	1	0	1	0	
Fatigue	11	0	0	9	0	0	
Anorexia	3	0	0	4	3	0	
Allergy	1	0	0	3	0	0	

Interpretation

- There was no significant survival advantage to surgery after chemoRT, despite improved PFS.
- Both chemoRT with definitive RT and chemoRT followed by resection (preferably lobectomy) are options for patients with stage IIIA(N2) NSCLC.
- In general surgery following chemoRT for stage III NSCLC is not universally acceptable, should be discussed in multidisciplinary approach and offered on case by case basis.

Radiation Dose Escalation RTOG 0617 Bradley et al Lancet Oncology 2015

 Phase III multi-centre, 434 patients, Nov. 2007-Nov. 2011.

VS

- 2 cycles Carbo/paclitaxel concurrently with RT 60Gy, then 2 add cycles of chemo,+/maintenance cetuximab.
- 2 cycles Carbo/paclitaxel concurrently with RT 74Gy, then 2 add cycles of chemo,+/maintenance cetuximab.

Radiation Dose Escalation RTOG 0617 Bradley et al Lancet Oncology 2015

- Median overall survival was 28.7 months (95% CI 24.1– 36.9) for patients who received standard-dose
- Radiotherapy and 20.3 months (17.7–25.0) for those who received high-dose radiotherapy (hazard ratio [HR] 1.38, 95% CI=1.09–1.76; p=0.004).
- Median follow-up for the cetuximab comparison was 21.3 months (IQR 23.5–29.8).
- Median overall survival in patients who received cetuximab was 25.0 months (95% CI 20.2–30.5)
 compared with 24.0 months (19.8–28.6). In those who did not (HR 1.07, 95% CI 0.84–1.35; p=0.29).

Radiation Dose Escalation RTOG 0617

Bradley et al Lancet Oncology 2015

- No statistical differences in grade 3 or worse toxic effects between radiotherapy groups.
- Cetuximab was associated with a higher rate of grade 3 or worse toxic effects (205 [86%] of 237 vs 160 [70%] of 228 patients; p<0.0001).
- There were more treatment-related deaths in the high-dose chemoradiotherapy and cetuximab groups (radiotherapy comparison: 8 vs 3 patients; cetuximab comparison: 10 vs 5 patients.
- There were no differences in severe pulmonary events between treatment groups.
- Severe esophagitis was more common in patients who received high-dose chemoradiotherapy than in those who received standarddose treatment (43 [21%] of 207 patients vs 16 [7%] of 217 patients; p<0.0001).</p>

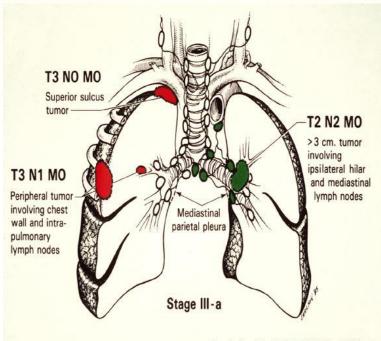
Radiation Dose Escalation RTOG 0617

Bradley et al Lancet Oncology 2015

- Interpretation:
 - -74 Gy radiation given in 2 Gy fractions with concurrent chemotherapy was not better than 60 Gy plus concurrent chemotherapy for patients with stage III non-small-cell lung cancer, and might be potentially harmful. -Addition of cetuximab to concurrent chemoradiation and consolidation treatment provided no benefit in overall survival for these patients.

Conclusions

- Concurrent chemoradiation is the standard of care for medically fit stage III NSCLC.
- Platin based chemo combination plus 60Gy is most commonly used.
- Toxicity is tolerated and reversible, death rate from treatment is fortunately low.
- 5 year survival are still low (20%)
- The role of surgery after concurrent treatment is controversial, there is DFS advantage but no OS advantage.
- Rates of recurrence are still high, especially distant relapse
- ? Role of new/novel/advanced systemic therapy, radiation therapy and surgical techniques.


Thank You

Immune Checkpoint Therapy for Stage III NSCLC

Rasna Gupta, MD, ABIM Internal Medicine, Hematology and Medical Oncology Windsor Regional Cancer Centre Windsor, ON

Stage 3 Disease

ANATOMIC STAG	E/PROG	NOSTIC G	ROUPS
Occult Carcinoma	TX	NO	MO
Stage 0	Tis	NO	MO
Stage IA	T1a	NO	MO
	T1b	NO	MO
Stage IB	T2a	NO	MO
Stage IIA	T2b	NO	MO
	T1a	N1	MO
	T1b	N1	MO
	T2a	N1	MO
Stage IIB	T2b	N1	MO
	T3	NO	MO
Stage IIIA	T1a	N2	MO
	T1b	N2	MO
	T2a	N2	MO
	T2b	N2	MO
	T3	N1	MO
	T3	N2	MO
	T4	NO	MO
	T4	N1	MO
Stage IIIB	T1a	N3	MO
	T1b	N3	MO
	T2a	N3	MO
	T2b	N3	MO
	T3	N3	MO
	T4	N2	MO
	T4	N3	MO
Stage IV	Any T	Any N	M1a
	Any T	Any N	M1b

Mountain CF. CHEST 89:225S, 1986.

Unmet Needs in Locally Advanced Stage III Unresectable NSCLC

Approximately, **28,600 patients in Canada** will develop lung cancer in 2017

- Nearly 85-90% of lung cancers are classified as nonsmall cell lung cancer (NSCLC)
- **25-40%** of patients with NSCLC will present with locally advanced disease

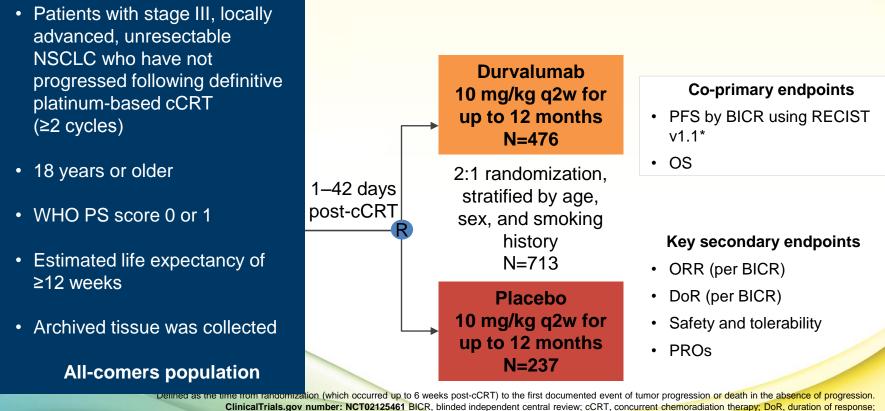
Approximately 30% of these patients have unresectable tumors.

Options for Treatment of Stage III Disease

- Surgery alone
- Surgery → chemotherapy
- Chemotherapy \rightarrow radiotherapy
- Chemotherapy \rightarrow surgery
- Chemo/radiotherapy → surgery
- Chemo/radiotherapy
- Chemotherapy → chemo/radiotherapy

Chemotherapy / radiotherapy -> chemotherapy

Cancer Care Ontario: Treatment of Patients with Stage III (N2 or N3) Non-Small Cell Lung Cancer


- Concurrent chemoradiation should be used for curative-intent treatment of patients with unresectable, lymph node-positive (N2 or N3) stage III NSCLC followed by active surveillance.
- In patients with potentially resectable (single-station, micro metastatic disease to N2) NSCLC, either definitive chemoradiation therapy or induction therapy followed by surgery (preferably lobectomy) is recommended and should be discussed at a multidisciplinary case conference.

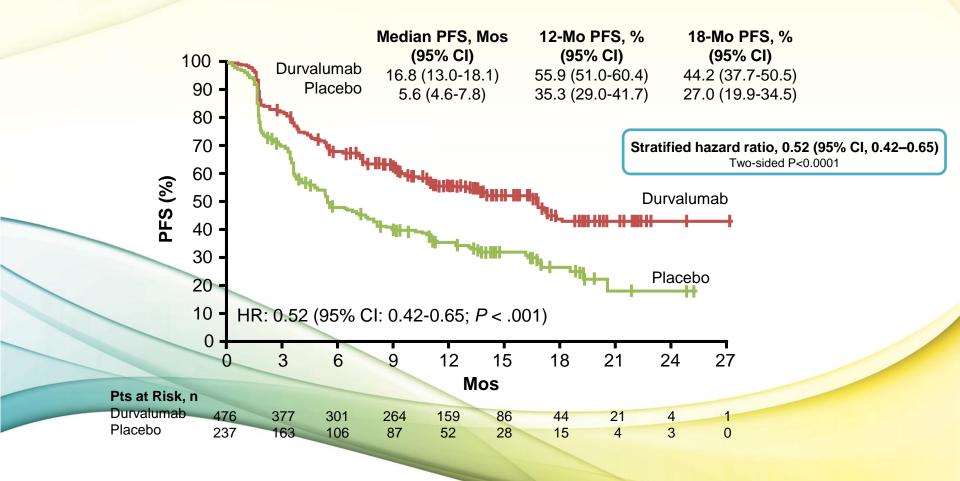
Prognosis

- Median progression-free survival (PFS) is 10.5 months after completing Chemo-radiation.
- Five-year survival is between 15% and 20%.
- There have been no major advances in locally advanced NSCLC for several years[;] thus, there is significant unmet need for novel therapeutic approaches to boost survival beyond cCRT
- PACIFIC is the first randomized phase III study to evaluate immune checkpoint blockade in patients with stage III, locally advanced, unresectable NSCLC

PACIFIC: Study Design

Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study

NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PROs, patient-reported outcomes; PS, performance status; q2w, every 2 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; WHO, World Health Organization


PACIFIC: Baseline Characteristics

• Small number of never-smokers enrolled on study

Characteristic, %	Durvalumab (n = 476)	Placebo (n = 237)
Median age, yrs (range) ■ Age ≥ 65 yrs, %	64 (31-84) 45.2	64 (23-90) 45.1
Male sex	70.2	70.0
WHO PS 0/1	49.2/50.4	48.1/51.5
Smoking status Current Former Never 	16.6 74.4 9.0	16.0 75.1 8.9
Disease stage IIIA IIIB Other 	52.9 44.5 2.5	52.7 45.1 2.1
Histology, squamous/ nonsquamous	47.1/52.9	43.0/57.0

Characteristic, %	Durvalumab (n = 476)	Placebo (n = 237)
PD-L1 • < 25% • ≥ 25% • Unknown	39.3 24.2 36.6	44.3 18.6 37.1
Prior CT, induction/cCRT	25.8/99.8	28.7/99.6
Prior RT • < 54 Gy • ≥ 54 to ≤ 66 Gy • > 66 to ≤ 74 Gy	0.6 92.9 6.3	0 91.6 8.0
Best response to prior cCRT CR PR SD	1.9 48.7 46.6	3.0 46.8 48.1

PACIFIC: PFS in ITT Population (Primary Endpoint)

PFS Subgroup Analysis

		Durvalumab	Placebo		Unstratified HR*
		No. of pa	tients		(95% CI)
	All patients	476	237	├ ●1	0.55 (0.45–0.68)
Sex	Male	334	166	⊢ ●1	0.56 (0.44–0.71)
Jex	Female	142	71	⊢	0.54 (0.37–0.79)
Age at randomization	<65 years	261	130	⊢ →→	0.43 (0.32–0.57)
Age at randomization	≥65 years	215	107	⊢	0.74 (0.54–1.01)
Smoking status	Smoker	433	216		0.59 (0.47–0.73)
Sinoking status	Non-smoker	43	21	⊢_	0.29 (0.15–0.57)
Disease stage	Stage IIIA	252	125	├──── ┤	0.53 (0.40–0.71)
Disease staye	Stage IIIB	212	107	⊢	0.59 (0.44–0.80)
Histology	Squamous	224	102	⊢ →→→	0.68 (0.50–0.92)
Histology	Non-squamous	252	135	⊢	0.45 (0.33–0.59)
Best response to	CR	9	7	⊢ →→1	-
•	PR	232	111	⊢	0.55 (0.41–0.75)
cCRT	SD	222	114	⊢	0.55 (0.41–0.74)
	≥25%	115	44	├─── ◆────┤	0.41 (0.26–0.65)
PD-L1 status	<25%	187	105	⊢−−− −	0.59 (0.43–0.82)
	Unknown	174	88	⊢ →→→	0.59 (0.42–0.83)
	Mutant	29	14		0.76 (0.35–1.64)
EGFR status	Wild-type	315	165	├── ◆──┥	0.47 (0.36–0.60)
	Unknown	132	58		
				0.25 0.5 1	2

Favors durvalumab

Favors placebo

*Hazard ratio and 95% CI not calculated if the subgroup has less than 20 events.

BICR, blinded independent central review; CI, confidence interval; CR, complete response; HR, hazard ratio; ITT, intention-to-treat; EGFR, epidermal growth factor receptor

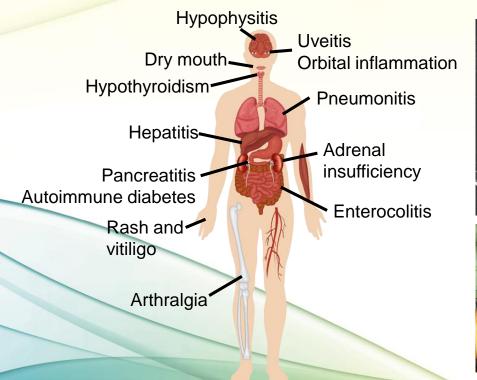
PACIFIC: Durvalumab Safety Summary

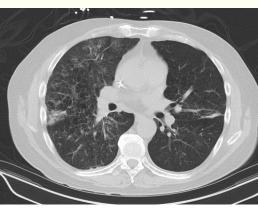
Durvalumab* (n = 475)	Placebo (n = 234)
460 (96.8)	222 (94.9)
142 (29.9)	61 (26.1)
21 (4.4)	13 (5.6)
73 (15.4)	23 (9.8)
322 (67.8)	125 (53.4)
136 (28.6)	53 (22.6)
115 (24.2) 16 (3.4)	19 (8.1) 6 (2.6)
	(n = 475) 460 (96.8) 142 (29.9) 21 (4.4) 73 (15.4) 322 (67.8) 136 (28.6) 115 (24.2)

*Included 2 pts randomized to placebo but who received \geq 1 dose of durvalumab.

Antonia SJ, et al. N Engl J Med. 2017;377:1919-1929. Paz-Ares L, et al. ESMO 2017. Abstract LBA1_PR.

Slide credit: clinicaloptions.com

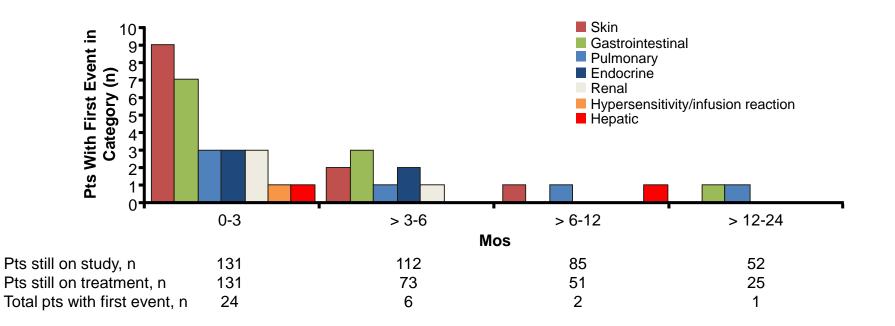

PACIFIC: Most Frequent AEs


Any-Cause AEs in ≥ 10% of Pts in Either	Durvaluma	b [†] (n = 475)	Placebo (n = 234)	
Arm,* n (%)	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Any	460 (96.8)	142 (29.9)	222 (94.9)	61 (26.1)
Cough	168 (35.4)	2 (0.4)	59 (25.2)	1 (0.4)
Pneumonitis or radiation pneumonitis [‡]	161 (33.9)	16 (3.4)	58 (24.8)	6 (2.6)
Fatigue	113 (23.8)	1 (0.2)	48 (20.5)	3 (1.3)
Dyspnea	106 (22.3)	7 (1.5)	56 (23.9)	6 (2.6)
Diarrhea	87 (18.3)	3 (0.6)	44 (18.8)	3 (1.3)
Pyrexia	70 (14.7)	1 (0.2)	21 (9.0)	0
Decreased appetite	68 (14.3)	1 (0.2)	30 (12.8)	2 (0.9)
Nausea	66 (13.9)	0	31 (13.2)	0
Pneumonia	62 (13.1)	21 (4.4)	18 (7.7)	9 (3.8)
Arthralgia	59 (12.4)	0	26 (11.1)	0

*Additional AEs in \geq 10% of pts in either arm included: pruritus, rash, upper respiratory tract infection, constipation, hypothyroidism, headache, asthenia, back pain, musculoskeletal pain, anemia. [†]Included 2 pts randomized to placebo but who received \geq 1 dose of durvalumab. [‡]Assessed by investigators with sponsor review and adjudication.

Antonia SJ, et al. N Engl J Med. 2017;377:1919-1929. Paz-Ares L, et al. ESMO 2017. Abstract LBA1_PR.

Immune-Related AEs Seen With Immune Checkpoint Inhibitors


Pneumonitis: ground-glass opacity

Autoimmune dermatitis

Michot JM, et al. Eur J Cancer. 2016;54:139-148. Photos courtesy of Elizabeth R. Plimack, MD, MS.

Time to Onset of First Treatment-Related AE With Nivolumab (Any Grade)

 Majority of treatment-related irAEs occurred within first 3 mos of treatment

Durvalumab Dose Interruption Recommendations

AE	Withhold Durvalumab	Discontinue Durvalumab
Pneumonitis	Grade 2	Grade 3/4
Hepatitis	ALT/AST > 3 to \leq 8 x ULN or total bilirubin > 1.5 to \leq 5 x ULN	ALT/AST > 8 x ULN <i>or</i> total bilirubin > 5 x ULN <i>or</i> concurrent ALT/AST > 3 x ULN <u>and</u> total bilirubin > 2 x ULN without other cause
Hypothyroidism, hyperthyroidism, adrenal insufficiency, hypophysitis/hypopituitarism, type I diabetes mellitus	Grade 2-4	
Nephritis	Creatinine > 1.5 to 3 x ULN	Creatinine > 3 x ULN
Rash/dermatitis	Grade 2 for > 1 wk or grade 3	Grade 4
Colitis	Grade 2	Grade 3/4
Infection	Grade 3/4	
IRR*		Grade 3/4
Other *For grade 1/2 IRRs, interrupt or slow in		Persistent grade 2/3 AEs not recovering to grade ≤ 1 within 12 wks of last dose or inability to taper corticosteroid within 12 wks of last dose or recurrent grade 3/4 AE

General Principles of Immune-Related Toxicity Management—Treatment

- Management generally based on severity of symptoms
 - Grade 1: close monitoring, symptomatic care, ± withhold drug
 - Grade 2: withhold drug, consider redose if toxicity resolves to grade ≤ 1; may administer low-dose corticosteroids (initial prednisone dose of 0.5-1 mg/kg/day or equivalent)
 - Grade 3: withhold drug, initiate high-dose corticosteroids (prednisone 1-2 mg/kg/day or methylprednisolone IV 1-2 mg/kg/day); may offer infliximab if no symptom improvement within 48-72 h of initiating corticosteroids; taper corticosteroids over at least 4-6 wks
 - Grade 4: discontinue drug
 - Exception: Adrenal insufficiency and hypothyroid require replacement hydrocortisone and levothyroxine, respectively, without use of steroids^{[2}]

Conclusions

 Durvalumab currently FDA approved for unresectable stage III NSCLC that has not progressed after concurrent platinum-based CT + RT

RADIATION PNEUMONITIS

Javaria Sohaib

Agenda

- Prevalence
- Pathophysiology
- Risk Factors
- Phases of Radiation Injury
- Symptoms and Signs
- Investigations
- Treatment
- Prognosis

Prevalence

- Ranges by cancer, and is much more common radiographically than clinically
- Breast Ca
 - ≻0-10% Clinically
 - ≥25-40% Radiographically
 - Lung Ca
 - ≻5-15% Clinically
 - ➢ 66% Radiographically

Pathophysiology

- Direct damage to lung tissues
- Radiation breaks chemical bonds and produces highly reactive free-radicals
- Triggers cytokines and apoptosis
- TNF Alpha, IL1 and IL-6 levels increased postradiation. Increased IL-6 levels are predictive of radiation-induced lung injury. Fibrosis can be induced via the TGFB.
- A hypersensitivity CD4 alveolitis can be induced inside and outside the radiation field. This is usually an early reaction.

Risk Factors

- Radiation
- Chemo
- Younger age
- Female
- Smoking history (but <u>active smoking may be protective</u>!)
- COPD
- Steroid withdrawal during XRT
- Prior thoracic radiation
- Poor lung function (pre-treatment)
- Volume loss due to lung collapse
- Poor performance status

Radiation Risk Factors

- Method: Conformational (IMRT/stereotactic) < large beam</p>
- Volume of irradiated lung Risk increases if > 10% of lung in field
- Dose of radiation
 - ➤V20 = Volume of lung that gets > 20 Gy
 - V20 > 22% increases risk, max recommended is 30-35%

Time-dose factor – dose fractionation – BID is lower risk than same total dose in OD XRT

Chemotherapy Risk Factors

Some drugs are radiation sensitizers and increase risk

- Doxorubicin
- ► Taxanes
- ➢Bleomycin
- ➤Cyclophosphamide
- Vincristine

 Concurrent or induction chemotherapy is higher risk than sequential

Radiation Injury – 5 Phases

- Immediate Phase
- Latent Phase
- Acute Exudative Phase
- Intermediate Phase
- Fibrotic Phase

Radiation Injury: Immediate Phase

- Starts hours to days after radiation
- Patient is asymptomatic
- Pathology shows

Congested mucosa with leukocytic infiltration
 Increased capillary permeability and pulmonary

edema

Radiation Injury: Latent Phase

- Ciliary dysfunction and increased number of goblet cells
- Thick secretions accumulate

Radiation Injury: Acute Exudative Phase

- Occurs **3 12 weeks** after exposure
- Clinical "radiation pneumonitis"
- Due to sloughing of endothelial and epithelial cells with microvascular thrombosis

Radiation Injury: Intermediate Phase

- Usually occurs 3 6 months after XRT
- Resolution of alveolar exudate and deposition of fibroblasts

Radiation Injury: Fibrotic Phase

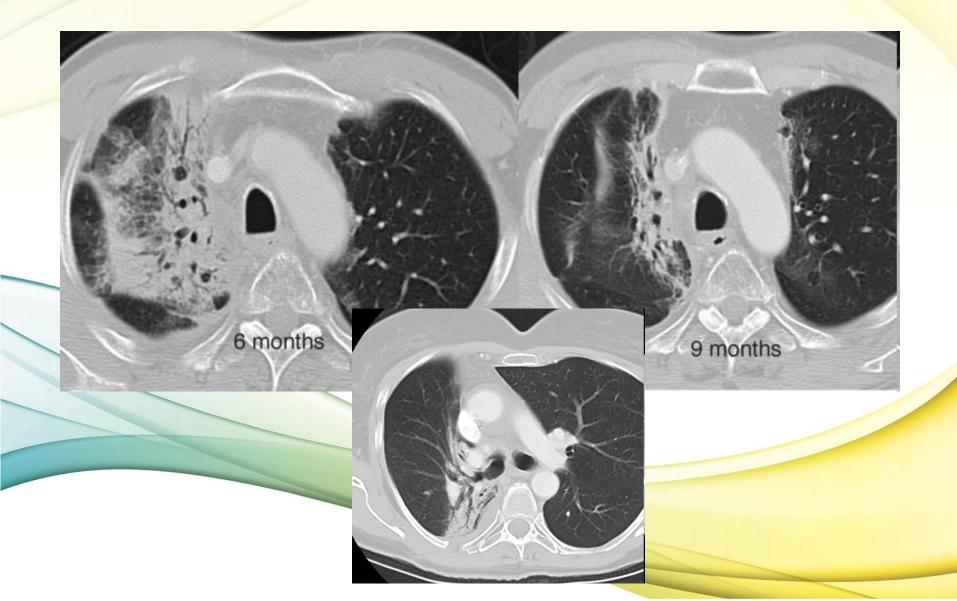
- 6 months or later after radiation
- Can progress over years
- More likely with palliative radiation
- Develop traction bronchiectasis
- Can get recurrent infections

Symptoms and Signs: Radiation Pneumonitis

Symptoms

Dry cough, SOBoE, pleuritic chest pain
 Low grade fever, malaise and weight loss

- Signs
 - Crackles
 - ➢ Pleural rub
 - Pleural effusion


Investigations

- PFT's show restrictive pattern (low TLC/DCO)
- Radiologic abnormalities are very common
- Symptoms of radiation pneumonitis are much less common

Classic Pneumonitis and Fibrosis

Classic Pneumonitis and Fibrosis

Treatment

Prednisone

At least 60mg/day x 2 weeks
Taper over 3 – 12 weeks

Azathioprine and Cyclosporine A
 Both been used in case reports
 Consider if can't use steroids

Prognosis

- Variable prognosis, can be mild or fatal
- Patients usually improve from 3 18 months after XRT
- Later improvement is unusual

My patient is in the office and is understandably very worried. His family is putting pressure on me. What are the next steps?

- Call Dr. Hirmiz
- Send patient to ER
- Send patient to Lung DAP
- Call David Musyj
- Refer the patient to the Cancer Centre and arrange a talk appointment with your patient