Management of Radiation Toxicity

Jennifer Croke MD MHPE FRCPC
Radiation Oncology, Princess Margaret Cancer Centre
Assistant Professor, University of Toronto

Conflict of Interest Declaration

No conflicts of interest to declare

Objectives:

- To review common radiation side effects and their management
- To provide an overview of patient-reported outcomes and use in oncology

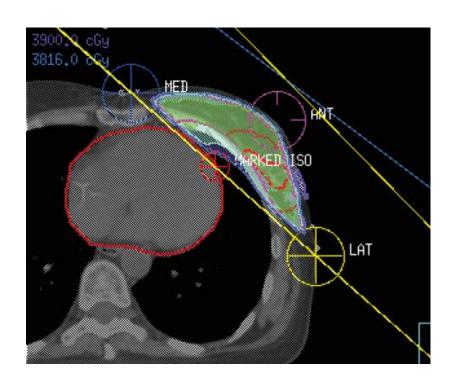
Tumour Control vs. Toxicity

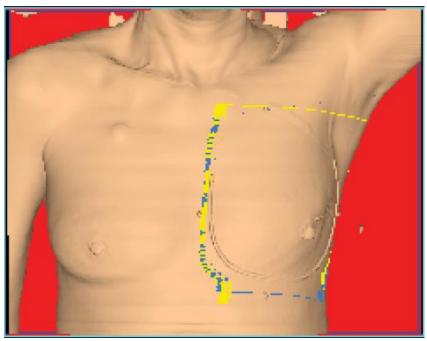
Treatment Factors

- Total Dose
- Individual fraction sizes
- Duration of treatment
- Concurrent chemo
- Volume irradiated

Patient Factors

- Co-morbidities
 - Vascular disease
 - Connective tissue disease
 - Inflammatory bowel disease
- Smoking
- Previous surgery




Radiation Toxicity

- Radiotherapy = local treatment
- Side effects generally localized to area receiving radiation
 - Think anatomically
- Acute: until 90 days
- Sub-acute: 3-12 months
- Late: > 1 year

Breast Cancer

Skin

• Erythema, pruritus, dry/moist desquamation

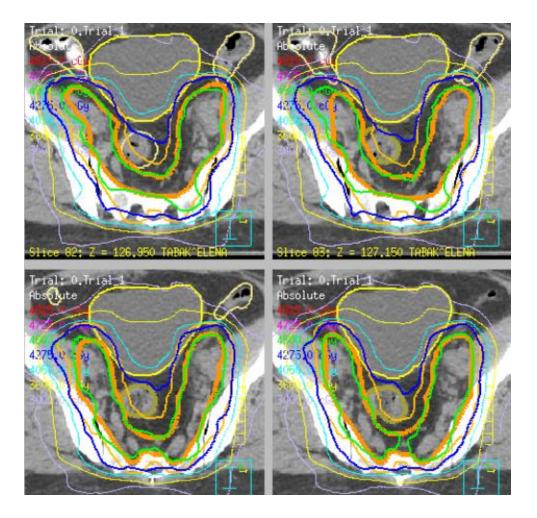
Management

- Glaxol or Aveeno cream BID-TID daily
- Pruritus Hydrocortisone 1% cream
- Dry desquamation Saline soaks
- Moist Desquamation Flamazine (Silver Sulfadiazine, topical antibiotic)
 - Sulfa allergy use Fucidin

45yo F post left breast and regional nodal radiation 3 months ago, presents with cough and SOBOE

Radiation Pneumonitis

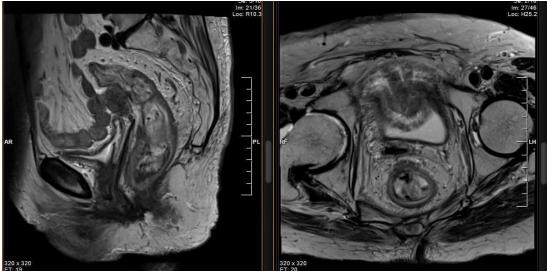
- Rare; ~1% risk with regional nodal radiotherapy
- Symptoms:
 - dry cough, fever, SOB, pleuritic chest pain
- Onset:
 - 6 weeks 6 months post RT
- Treatment:
 - Prednisone 50-60mg/day; taper over ~6 weeks
 - Watch for superimposed pneumonia, may require antibiotics
 - Refractory symptoms, refer to Resp PFTs


Lymphedema

- Dependent upon:
 - Type of axillary surgery: SLNB (~5%) vs ALND (~30%)
 - # of LNs removed
 - RNI: post SLNB (~10-15%) vs. post ALND (35-40%)
 - Systemic therapy
 - BMI
- Chronic pain, functional impairment, distress, decreased QoL
- Management:
 - Physio, massage
 - Garment/sleeves

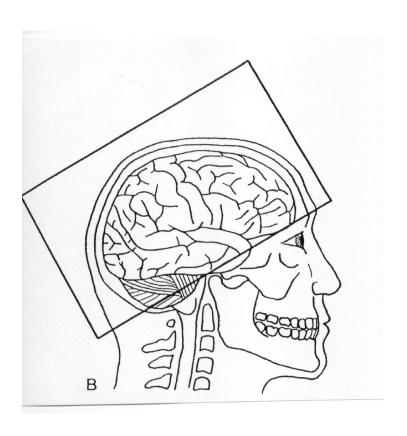
Pelvic Radiotherapy: Gyne, GI, GU

79yo F FIGO 2B cervix cancer


- Concurrent cisplatin + pelvic RT (45Gy/25 fxn) + Brachytherapy
- Complete response
- 18 months later rectal bleeding requiring transfusions
- Work-up? Management?

RT Proctitis

- Colonoscopy: neovascularization from anal verge to 25cm, mucosal atrophy, bleeding
 - too extensive for Argon therapy
- CT: thickened bowel loops, no recurrence



Management:

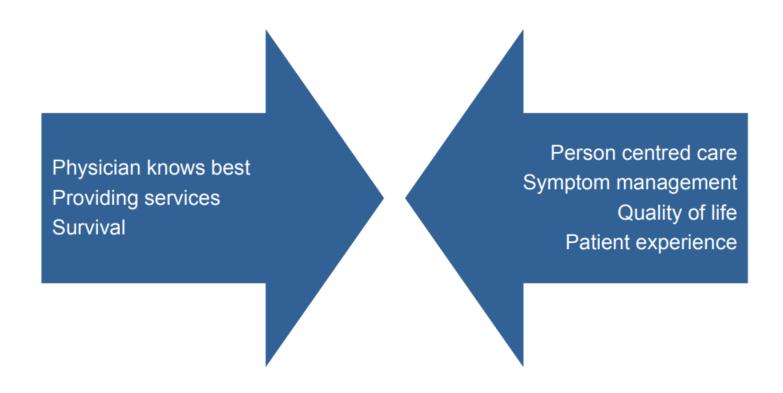
- Conservative management:
 - Steroid enemas, 5-ASA, Flagyl limited response
- Anesthesia consult:
 - Hyperbaric oxygen minimal response
- General Surgery consult:
 - Would require APR: decision against due to age, surgical risks a/w prior RT
- Currently: intermittent symptoms, transfusions prn

CNS – primary, brain mets

- Fatigue
- Hairloss/scalp irritation
- Headache
- Nausea/vomiting
- Seizure
- Focal neurological symptoms
- Ear (pain/pressure)

Management

- Decadron/PPI: taper
- Anti-emetics: Zofran pre-RT, prn
- Anti-seizure medications if hx of seizures



Improving RT toxicity profiles

- Technological advances
 - Conformal therapy: intensity modulated RT (IMRT), volumetric arc RT (VMAT)
- High precision image guidance, such as cone beam CT
- Stereotactic RT: conformal, high doses, fewer fractions

Paradigm Shift

Radiation and Immunotherapy

- Not a new concept
 - 1970 immune system contributes to the anti-tumour effects generated from RT
- RT thought to be a local treatment only; however, has the potential to generate out of field "abscopal" anti-tumour responses through immunologic mechanisms
- Therefore, IO may augment the locoregional benefits of RT and conversely, RT may prime the tumour environment enabling more effective systemic response from IO
 - Synergistic action

Timing of Radiation

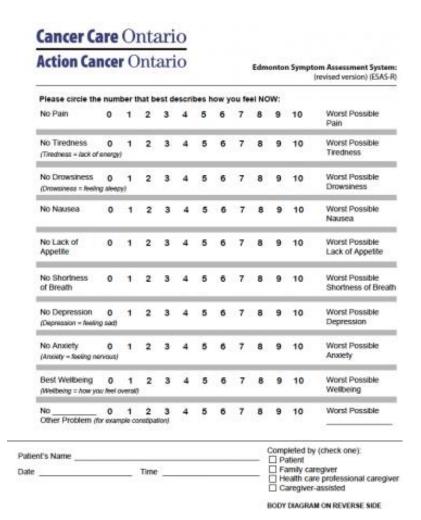
- Constantly evolving field
- Balance safety and optimal timing of cancer treatments
- Multi-disciplinary discussion important
- Typically RT and IO are not concurrent
 - Ideal "wash-out" likely unknown
 - Dependent on half-life of IO
- Until we know more: use best clinical judgement
 - minimize potential toxicities of RT/IO vs providing timely and comprehensive treatment

Burden of cancer


- Cancer diagnosis and treatment causes significant physical and emotional distress, which can:
 - decrease quality of life
 - be costly to health systems
- In Ontario, 40% of breast cancer patients undergoing adjuvant treatment visit the ER within the first 2 months of treatment
 - Multifactorial?
 - lack of systematic standardized symptom assessment measures can lead to inadequate symptom management and poor patient/clinician communication

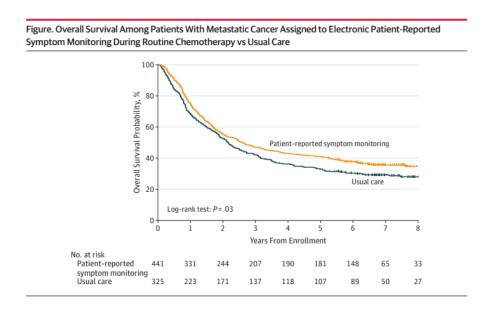
What are PROs?

- capture the patient's perspective
- "any report of the status of a patient's health condition that comes directly from the patient, without interpretation of the patient's response by a clinician or anyone else"
- person-centered care



Generic: ESAS-r

- patient-reported distress
- validated in oncology populations
- screening mandated by CCO
- screening rates: indicator of programmatic performance



What is the evidence for PROs in Oncology?

- Improves patient-clinician communication,
- Improves patient satisfaction
- Complements physician-reported toxicities
- Improves symptom monitoring,
- Decreases emergency room admissions,
- Prolongs time on active treatments
- Improves health-related QoL
- •

PROs improve OS: clinical trial setting

- Integration of ePROs into the care of patients with metastatic cancer is associated with OS vs. usual care
 - ? earlier detection and intervention
 - Are these results translatable to the "real-world?"

PROs also improves OS: real-world

- Retrospective matched cohort study (Ontario Cancer Registry)
 - Patients "exposed" to ESAS vs. "control"

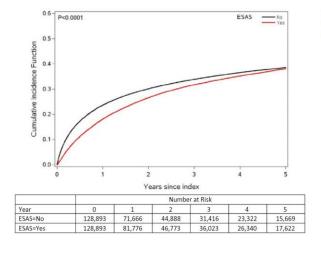


FIGURE 2 Cumulative incidence function of death for patients exposed and unexposed to ESAS

- ESAS exposure associated with improved OS in cancer pts
- Real work evidence for the impact of routine symptom assessment in cancer care

How can we use PROs?

- Research: endpoint in research studies (e.g. clinical trials)
- Clinical: individual level to inform an individual patient's care
 - symptoms can be identified and addressed
- Quality Improvement
- Collect vs. Act?
 - "busy-work" vs. meaningful change

Things to Consider

- The right tool at the right time for the right patient
- Scoring systems
 - The higher the better? The higher the worst?
- Workflow and Operations
 - Clinic integration
 - Technical implementation
 - Roles and responsibilities
 - Meaningful action

Conclusions:

- When making a decision to treat a patient with radiotherapy,
 we must balance benefits of treatment with risks of toxicity
- Modern RT techniques have improved toxicity profiles
 - Where IO fits in still remains unknown
- PROs within oncology have many proven benefits, although implementation has challenges

